A statistical view of iterative methods for linear inverse problems
نویسندگان
چکیده
منابع مشابه
Iterative Inversion Methods for Statistical Inverse Problems
In this paper we discuss general regularization estimators. This class includes Tikhonov type and spectral cut-off estimators as well as iterative methods, such as ν-methods and the Landweber iteration. The latter estimators achieve the same (optimal) convergence rates as spectral cut-off, but do not require explicit spectral information on the operator and are often much faster to compute than...
متن کاملFilter Based Methods For Statistical Linear Inverse Problems
Ill-posed inverse problems are ubiquitous in applications. Understanding of algorithms for their solution has been greatly enhanced by a deep understanding of the linear inverse problem. In the applied communities ensemble-based filtering methods have recently been used to solve inverse problems by introducing an artificial dynamical system. This opens up the possibility of using a range of oth...
متن کاملNonlinear methods for inverse statistical problems
In the uncertainty treatment framework considered in this paper, the intrinsic variability of the inputs of a physical simulation model is modelled by a multivariate probability distribution. The objective is to identify this probability distribution the dispersion of which is independent of the sample size since intrinsic variability is at stake based on observation of some model outputs. More...
متن کاملA Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also kno...
متن کاملApproximate Inverse Preconditioning of Iterative Methods for Nonsymmetric Linear Systems
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods. 1. Introduction. We describe a method for computing an incomplete factorization of the inverse of a general sparse matrix A 2 IR nn. The resulting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TEST
سال: 2007
ISSN: 1133-0686,1863-8260
DOI: 10.1007/s11749-006-0038-2